Curso de Inteligencia Artificial

Curso de Inteligencia Artificial

Los cursos locales dirigidos por instructor en vivo de capacitación en Inteligencia Artificial (IA) demuestran, a través de prácticas manuales, cómo implementar soluciones de inteligencia artificial para resolver problemas del mundo real. La capacitación en IA está disponible en dos modalidades: "presencial en vivo" y "remota en vivo"; la primera se puede llevar a cabo localmente en las instalaciones del cliente en México o en los centros de capacitación corporativa de NobleProg en México, la segunda se lleva a cabo a través de un escritorio remoto interactivo.

NobleProg -- Su Proveedor Local de Capacitación

Testimonios

★★★★★
★★★★★

Programa del curso Inteligencia Artificial

CódigoNombreDuraciónInformación General
aiintVisión general de Inteligencia Artificial7 horasEste curso ha sido creado para gerentes, arquitectos de soluciones, oficiales de innovación, CTO, arquitectos de software y todos los interesados en la visión general de la inteligencia artificial aplicada y el pronóstico más cercano para su desarrollo.
encogintroEncog: Introducción al Aprendizaje Automático14 horasEncog es un marco de aprendizaje de máquina de código abierto para Java y .Net.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo crear varios componentes de redes neuronales usando ENCOG. Se discutirán estudios de casos del mundo real y se explorarán soluciones basadas en el lenguaje de máquina para estos problemas.

Al final de esta capacitación, los participantes podrán:

- Preparar datos para redes neuronales usando el proceso de normalización
- Implementar redes de feed feed y metodologías de capacitación en propagación
- Implementar tareas de clasificación y regresión
- Modelar y entrenar redes neuronales usando el banco de trabajo basado en GUI de Encog
- Integrar el soporte de redes neuronales en aplicaciones del mundo real

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
undnnComprender las Redes Neuronales Profundas35 horasEste curso comienza con la entrega de conocimientos conceptuales en redes neuronales y, en general, en el algoritmo de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones).

Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.

Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.

Después de completar este curso, los delegados:

- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro

No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.

La duración del curso completo será de alrededor de 70 horas y no de 35 horas.
opennlpOpenNLP para Aprendizaje Automático Basado en Texto14 horasLa biblioteca OpenNLP de Apache es un kit de herramientas basado en el aprendizaje automático para procesar texto en lenguaje natural. Es compatible con las tareas NLP más comunes, como detección de lenguaje, tokenización, segmentación de oraciones, etiquetado de voz parcial, extracción de entidad nombrada, fragmentación, análisis sintáctico y resolución de correferencia.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo crear modelos para procesar datos basados en texto usando OpenNLP. Los datos de entrenamiento de muestra y los conjuntos de datos personalizados se usarán como base para los ejercicios de laboratorio.

Al final de esta capacitación, los participantes podrán:

- Instalar y configurar OpenNLP
- Descargue modelos existentes y cree sus propios
- Entrene a los modelos en varios conjuntos de datos de muestra
- Integra OpenNLP con aplicaciones Java existentes

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
mlbankingpython_Aprendizaje Automático para la Banca (con Python)21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria bancaria. Python se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
mlbankingrAprendizaje Automático para la Banca (con R)28 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria bancaria. R se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en vivo.

Audiencia

- Desarrolladores
- Científicos de datos
- Profesionales bancarios con experiencia técnica

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
python_nlpProcesamiento de lenguaje natural con Deep Dive en Python y NLTK35 horasAl final de la capacitación, se espera que los delegados estén suficientemente equipados con los conceptos esenciales de python y que sean capaces de utilizar NLTK de manera suficiente para implementar la mayoría de las operaciones basadas en ML y PNL. La capacitación tiene como objetivo proporcionar no solo un conocimiento de ejecución sino también el conocimiento lógico y operativo de la tecnología que contiene.
matlabdlMatlab para el Aprendizaje Profundo14 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar Matlab para diseñar, construir y visualizar una red neuronal convolucional para el reconocimiento de imágenes.

Al final de esta capacitación, los participantes podrán:

- Construya un modelo de aprendizaje profundo
- Automatizar el etiquetado de datos
- Trabaja con modelos de Caffe y TensorFlow-Keras
- Entrene datos usando múltiples GPU, la nube o clusters

Audiencia

- Desarrolladores
- Ingenieros
- Expertos de dominio

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
matlabpredanalyticsMatlab para Análisis Predictivo21 horasEl análisis predictivo es el proceso de usar el análisis de datos para hacer predicciones sobre el futuro. Este proceso utiliza datos junto con la extracción de datos, estadísticas y técnicas de aprendizaje automático para crear un modelo predictivo para pronosticar eventos futuros.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar Matlab para construir modelos predictivos y aplicarlos a grandes conjuntos de datos de muestra para predecir eventos futuros basados en los datos.

Al final de esta capacitación, los participantes podrán:

- Crear modelos predictivos para analizar patrones en datos históricos y transaccionales
- Use modelos predictivos para identificar riesgos y oportunidades
- Cree modelos matemáticos que capturen tendencias importantes
- Use datos de dispositivos y sistemas comerciales para reducir el desperdicio, ahorrar tiempo o reducir costos

Audiencia

- Desarrolladores
- Ingenieros
- Expertos de dominio

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
tensorflowservingCurso de TensorFlow Serving7 horasTensorFlow Serving es un sistema para servir modelos de aprendizaje automático (ML) a la producción.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a configurar y usar TensorFlow Serving para implementar y administrar modelos ML en un entorno de producción.

Al final de esta capacitación, los participantes podrán:

- Entrene, exporte y sirva varios modelos de TensorFlow
- Pruebe e implemente algoritmos utilizando una única arquitectura y un conjunto de API
- Extienda TensorFlow Sirviendo para servir a otros tipos de modelos más allá de los modelos TensorFlow

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
mliosAprendizaje Automático en iOS14 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar la pila de tecnología de iOS Machine Learning (ML) mientras avanzan en la creación e implementación de una aplicación móvil iOS.

Al final de esta capacitación, los participantes podrán:

- Cree una aplicación móvil capaz de procesar imágenes, análisis de texto y reconocimiento de voz
- Acceda a modelos de ML pre-entrenados para la integración en aplicaciones de iOS
- Crea un modelo ML personalizado
- Agregue soporte de Siri Voice a las aplicaciones de iOS
- Comprender y usar frameworks como coreML, Vision, CoreGraphics y GamePlayKit
- Utilice idiomas y herramientas como Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda y Spyder

Audiencia

- Desarrolladores

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
nlgPython para la Generación de Lenguaje Natural21 horasLa generación de lenguaje natural (NLG) se refiere a la producción de texto o discurso en lenguaje natural por una computadora.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar Python para producir texto en lenguaje natural de alta calidad construyendo su propio sistema NLG desde cero. También se examinarán los casos de estudio y los conceptos relevantes se aplicarán a los proyectos de laboratorio en vivo para generar contenido.

Al final de esta capacitación, los participantes podrán:

- Utilice NLG para generar automáticamente contenido para diversas industrias, desde periodismo, a bienes raíces, a informes meteorológicos y deportivos.
- Seleccione y organice el contenido fuente, planifique oraciones y prepare un sistema para la generación automática de contenido original
- Comprender la tubería NLG y aplicar las técnicas correctas en cada etapa
- Comprender la arquitectura de un sistema de generación de lenguaje natural (NLG)
- Implementar los algoritmos y modelos más adecuados para análisis y pedidos
- Extraiga datos de fuentes de datos disponibles públicamente, así como bases de datos seleccionadas para usar como material para el texto generado
- Reemplazar procesos de escritura manuales y laboriosos con creación de contenido automatizado y generado por computadora

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
pythontextmlPython: Aprendizaje automático con texto21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a utilizar las técnicas correctas de aprendizaje automático y procesamiento de lenguaje natural (NLP, por sus siglas en inglés) para extraer valor de los datos basados en texto.

Al final de esta capacitación, los participantes podrán:

- Resuelva problemas de ciencias de datos basados en texto con código reutilizable de alta calidad
- Aplicar diferentes aspectos de scikit-learn (clasificación, clustering, regresión, reducción de dimensionalidad) para resolver problemas
- Cree modelos efectivos de aprendizaje automático utilizando datos basados en texto
- Crear un conjunto de datos y extraer características del texto no estructurado
- Visualice los datos con Matplotlib
- Construya y evalúe modelos para obtener información
- Solucionar problemas de errores de codificación de texto

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
encogadvEncog: Aprendizaje Automático Avanzado14 horasEncog es un marco de aprendizaje de máquina de código abierto para Java y .Net.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas avanzadas de aprendizaje automático para construir modelos predictivos precisos de redes neuronales.

Al final de esta capacitación, los participantes podrán:

- Implementar diferentes técnicas de optimización de redes neuronales para resolver el ajuste insuficiente y el sobreajuste
- Comprender y elegir entre varias arquitecturas de redes neuronales
- Implementar redes supervisadas de retroalimentación y retroalimentación

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
dlfornlpAprendizaje profundo para NLP (procesamiento de lenguaje natural)28 horasDeep Learning para NLP permite que una máquina aprenda procesamiento de lenguaje simple a complejo. Entre las tareas actualmente posibles se encuentran la traducción de idiomas y la generación de subtítulos para fotos. DL (Deep Learning) es un subconjunto de ML (Machine Learning). Python es un lenguaje de programación popular que contiene bibliotecas para Deep Learning para NLP.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar las bibliotecas de Python para el procesamiento de lenguaje natural (NLP) mientras crean una aplicación que procesa un conjunto de imágenes y genera leyendas.

Al final de esta capacitación, los participantes podrán:

- Diseño y código DL para NLP utilizando bibliotecas Python
- Crear código de Python que lea una gran colección de imágenes y genere palabras clave
- Crear código Python que genere subtítulos de las palabras clave detectadas

Audiencia

- Programadores con interés en la lingüística
- Programadores que buscan una comprensión de NLP (procesamiento de lenguaje natural)

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
radvmlAprendizaje Automático Avanzado con R21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas avanzadas para el aprendizaje automático con R a medida que avanzan en la creación de una aplicación en el mundo real.

Al final de esta capacitación, los participantes podrán:

- Utiliza técnicas como el ajuste de hiperparámetros y el aprendizaje profundo
- Comprender e implementar técnicas de aprendizaje no supervisadas
- Ponga un modelo en producción para usar en una aplicación más grande

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
pythonadvmlPython para el Aprendizaje Automático Avanzado21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán las técnicas de aprendizaje automático más relevantes y de vanguardia en Python a medida que crean una serie de aplicaciones de demostración que incluyen imágenes, música, texto y datos financieros.

Al final de esta capacitación, los participantes podrán:

- Implementar algoritmos y técnicas de aprendizaje automático para resolver problemas complejos
- Aplicar el aprendizaje profundo y el aprendizaje semi-supervisado a aplicaciones que involucren imagen, música, texto e información financiera
- Empujar los algoritmos de Python a su máximo potencial
- Usa bibliotecas y paquetes como NumPy y Theano

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
fijiFiji: Introducción al Procesamiento de Imágenes Científicas21 horasFiji es un paquete de procesamiento de imágenes de código abierto que agrupa ImageJ (un programa de procesamiento de imágenes científicas multidimensionales) y una serie de complementos para el análisis de imágenes científicas.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar la distribución de Fiji y su programa subyacente ImageJ para crear una aplicación de análisis de imágenes.

Al final de esta capacitación, los participantes podrán:

- Utilice las características de programación avanzadas y los componentes de software de Fiji para ampliar ImageJ
- Sujete imágenes tridimensionales grandes de mosaicos superpuestos
- Actualice automáticamente una instalación de Fiji en el arranque utilizando el sistema de actualización integrado
- Seleccione entre una amplia selección de lenguajes de scripting para crear soluciones de análisis de imágenes personalizadas
- Utilice las poderosas bibliotecas de Fiji, como ImgLib en grandes conjuntos de datos de bioimagen
- Implemente su aplicación y colabore con otros científicos en proyectos similares

Audiencia

- Científicos
- Investigadores
- Desarrolladores

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
rasberrypiopencvRaspberry Pi + OpenCV: Construye un Sistema de Reconocimiento Facial21 horasEste entrenamiento en vivo, dirigido por un instructor, presenta el software, el hardware y el proceso paso a paso necesarios para construir un sistema de reconocimiento facial desde cero.

El hardware utilizado en este laboratorio incluye Rasberry Pi, un módulo de cámara, servos (opcional), etc. Los participantes son responsables de comprar estos componentes ellos mismos. El software utilizado incluye OpenCV, Linux, Python, etc.

Al final de esta capacitación, los participantes podrán:

- Instale Linux, OpenCV y otras utilidades de software y bibliotecas en un Rasberry Pi.
- Configure OpenCV para capturar y detectar imágenes faciales.
- Comprenda las diversas opciones para empaquetar un sistema Rasberry Pi para su uso en entornos del mundo real.
- Adapte el sistema para una variedad de casos de uso, incluida la vigilancia, la verificación de identidad, etc.

Audiencia

- Desarrolladores
- Técnicos de hardware / software
- Personas técnicas en todas las industrias
- Aficionados

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Nota

- Otras opciones de hardware y software incluyen: Arduino, OpenFace, Windows, etc. Si desea utilizar alguno de estos, contáctenos para organizarlo.
openfaceOpenFace: Creación de Sistemas de Reconocimiento Facial14 horasOpenFace es un software de reconocimiento facial en tiempo real basado en Python y Torch basado en la investigación FaceNet de Google.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear y desplegar una aplicación de reconocimiento facial de muestra.

Al final de esta capacitación, los participantes podrán:

Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC, Torch y nn4 para implementar la detección de rostros, la alineación y la transformación.
Aplique OpenFace a aplicaciones del mundo real tales como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etc.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
embeddingprojectorEmbedding Projector: Visualización de sus Datos de Entrenamiento14 horasEmbedding Projector es una aplicación web de código abierto para visualizar los datos utilizados para entrenar sistemas de aprendizaje automático. Creado por Google, es parte de TensorFlow.

Esta capacitación en vivo dirigida por un instructor presenta los conceptos detrás de Embedding Projector y guía a los participantes a través de la configuración de un proyecto de demostración.

Al final de esta capacitación, los participantes podrán:

- Explore cómo los datos se interpretan mediante modelos de aprendizaje automático
- Navegue a través de vistas 3D y 2D de datos para comprender cómo lo interpreta un algoritmo de aprendizaje automático
- Comprenda los conceptos detrás de Embeddings y su papel en la representación de vectores matemáticos para imágenes, palabras y números.
- Explore las propiedades de una incrustación específica para comprender el comportamiento de un modelo
- Aplicar Embedding Project a casos de uso del mundo real, como crear un sistema de recomendación de canciones para amantes de la música

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
t2tT2T: Creación de Modelos de Secuencia a Secuencia para el Aprendizaje Generalizado7 horasTensor2Tensor (T2T) es una biblioteca modular y extensible para el entrenamiento de modelos de AI en diferentes tareas, utilizando diferentes tipos de datos de entrenamiento, por ejemplo: reconocimiento de imágenes, traducción, análisis sintáctico, subtítulos de imágenes y reconocimiento de voz. Lo mantiene el equipo de Google Brain.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo preparar un modelo de aprendizaje profundo para resolver tareas múltiples.

Al final de esta capacitación, los participantes podrán:

- Instalar tensor2tensor, seleccionar un conjunto de datos y entrenar y evaluar un modelo de IA
- Personalice un entorno de desarrollo utilizando las herramientas y los componentes incluidos en Tensor2Tensor
- Cree y use un único modelo para aprender de forma simultánea varias tareas de varios dominios
- Utilice el modelo para aprender de tareas con una gran cantidad de datos de entrenamiento y aplicar ese conocimiento a tareas donde los datos son limitados
- Obtenga resultados de procesamiento satisfactorios con una sola GPU

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
cognitivecomputingComputación Cognitiva: Una Introducción para Gerentes de Negocios7 horasLa informática cognitiva se refiere a los sistemas que abarcan el aprendizaje automático, el razonamiento, el procesamiento del lenguaje natural, el reconocimiento del habla y la visión (reconocimiento de objetos), la interacción humano-computadora, el diálogo y la generación narrativa, por nombrar algunos. Un sistema de cómputo cognitivo a menudo se compone de múltiples tecnologías que trabajan juntas para procesar datos contextuales "en caliente" en memoria, así como grandes conjuntos de datos históricos "fríos" en lote. Los ejemplos de tales tecnologías incluyen Kafka, Spark, Elasticsearch, Cassandra y Hadoop.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo Cognitive Computing complementa a AI y Big Data y cómo los sistemas construidos con propósito se pueden utilizar para realizar comportamientos similares a los humanos que mejoran el rendimiento de las interacciones humano-máquina en los negocios.

Al final de esta capacitación, los participantes comprenderán:

- La relación entre la computación cognitiva y la inteligencia artificial (IA)
- La naturaleza intrínsecamente probabilística de la informática cognitiva y cómo usarla como una ventaja comercial
- Cómo administrar sistemas de computación cognitiva que se comportan de maneras inesperadas
- Qué empresas y sistemas de software ofrecen las soluciones de computación cognitiva más atractivas

Audiencia

- Gerentes de negocios

Formato del curso

- Conferencia, discusiones de casos y ejercicios
dsstneAmazon DSSTNE: Construya un Sistema de Recomendación7 horasAmazon DSSTNE es una biblioteca de código abierto para el entrenamiento y la implementación de modelos de recomendación. Permite modelos con matrices de peso que son demasiado grandes para que una sola GPU se entrene en un solo host.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar DSSTNE para crear una aplicación de recomendación.

Al final de esta capacitación, los participantes podrán:

- Entrene un modelo de recomendación con conjuntos de datos dispersos como entrada
- Escala de entrenamiento y modelos de predicción en múltiples GPU
- Extienda el cómputo y el almacenamiento de forma paralela a los modelos
- Genere recomendaciones de productos personalizados similares a Amazon.
- Implemente una aplicación lista para producción que pueda escalar a cargas de trabajo pesadas

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
snorkelSnorkel: Procesar Rápidamente los Datos de Entrenamiento7 horasSnorkel es un sistema para crear, modelar y gestionar rápidamente datos de entrenamiento. Se enfoca en acelerar el desarrollo de aplicaciones de extracción de datos estructuradas u "oscuras" para dominios en los que grandes conjuntos de entrenamiento etiquetados no están disponibles o son fáciles de obtener.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas para extraer valor de datos no estructurados como texto, tablas, figuras e imágenes mediante el modelado de datos de entrenamiento con Snorkel.

Al final de esta capacitación, los participantes podrán:

- Crear programáticamente conjuntos de entrenamiento para permitir el etiquetado de conjuntos de entrenamiento masivos
- Entrene modelos finales de alta calidad modelando primero conjuntos de entrenamiento ruidosos
- Use Snorkel para implementar técnicas de supervisión débiles y aplicar programación de datos a sistemas de aprendizaje automático débilmente supervisados

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
PaddlePaddleCurso de PaddlePaddle21 horasPaddlePaddle (PArallel Distributed Deep LEarning) es una plataforma de aprendizaje profundo escalable desarrollada por Baidu.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar PaddlePaddle para permitir el aprendizaje profundo en sus aplicaciones de productos y servicios.

Al final de esta capacitación, los participantes podrán:

- Configurar y configurar PaddlePaddle
- Configure una red neuronal convolucional (CNN) para el reconocimiento de imágenes y la detección de objetos
- Configurar una Red Neuronal Recurrente (RNN) para el análisis de sentimientos
- Establecer un aprendizaje profundo sobre los sistemas de recomendación para ayudar a los usuarios a encontrar respuestas
- Predecir porcentajes de clics (CTR), clasificar conjuntos de imágenes a gran escala, realizar reconocimiento óptico de caracteres (OCR), buscar rangos, detectar virus informáticos e implementar un sistema de recomendaciones.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
textsumResumen de texto con Python14 horasEn Python Machine Learning, la característica de resumen de texto puede leer el texto de entrada y producir un resumen de texto. Esta capacidad está disponible desde la línea de comandos o como una API / biblioteca de Python. Una aplicación interesante es la creación rápida de resúmenes ejecutivos; esto es particularmente útil para las organizaciones que necesitan revisar grandes cantidades de datos de texto antes de generar informes y presentaciones.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar Python para crear una aplicación simple que genere automáticamente un resumen del texto de entrada.

Al final de esta capacitación, los participantes podrán:

- Use una herramienta de línea de comandos que resuma texto.
- Diseña y crea un código de resumen de texto usando las bibliotecas de Python.
- Evalúe tres bibliotecas de resumen de Python: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
bigdatabicriminalBig Data Business Intelligence para análisis de inteligencia criminal35 horasLos avances en las tecnologías y la creciente cantidad de información están transformando la forma en que se lleva a cabo la aplicación de la ley. Los desafíos que plantea Big Data son casi tan desalentadores como la promesa de Big Data. Almacenar datos de manera eficiente es uno de estos desafíos; analizarlo efectivamente es otro.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán la mentalidad con la cual abordarán las tecnologías de Big Data, evaluarán su impacto en los procesos y políticas existentes, e implementarán estas tecnologías con el propósito de identificar la actividad delictiva y prevenir el delito. Se examinarán estudios de casos de organizaciones de orden público de todo el mundo para obtener información sobre sus enfoques, desafíos y resultados de adopción.

Al final de esta capacitación, los participantes podrán:

- Combine la tecnología Big Data con procesos tradicionales de recopilación de datos para armar una historia durante una investigación
- Implementar soluciones industriales de almacenamiento y procesamiento de big data para el análisis de datos
- Preparar una propuesta para la adopción de las herramientas y procesos más adecuados para permitir un enfoque basado en datos para la investigación criminal

Audiencia

- Especialistas en aplicación de la ley con experiencia técnica

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
tpuprogrammingProgramación de TPU: Construcción de Aplicaciones de Redes Neuronales en Unidades de Procesamiento de Tensiones7 horasLa Unidad de Procesamiento de Tensor (TPU) es la arquitectura que Google ha utilizado internamente durante varios años y ahora está disponible para el público en general. Incluye varias optimizaciones específicamente para su uso en redes neuronales, incluida la multiplicación simplificada de matrices, y enteros de 8 bits en lugar de 16 bits para devolver niveles adecuados de precisión.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aprovechar las innovaciones en los procesadores de TPU para maximizar el rendimiento de sus propias aplicaciones de inteligencia artificial.

Al final de la capacitación, los participantes podrán:

- Entrenar varios tipos de redes neuronales en grandes cantidades de datos
- Use TPU para acelerar el proceso de inferencia hasta en dos órdenes de magnitud
- Utilice TPU para procesar aplicaciones intensivas, como búsqueda de imágenes, visión en la nube y fotos

Audiencia

- Desarrolladores
- Investigadores
- Ingenieros
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
AISoc_LBGAI en los negocios y la sociedad y el futuro de la IA - AI / Robótica7 horasEsta es una sesión de capacitación basada en el aula en una presentación y formato de preguntas y respuestas

Próximos Cursos Inteligencia Artificial

CursoFechaPrecio del Curso [A distancia / Presencial]
Álgebra para el aprendizaje automático - Monterrey - Oficinas en el ParqueLun, 2018-12-31 09:3057,900MXN / 82,500MXN
Álgebra para el aprendizaje automático - Ciudad de Mexico - Mariano EscobedoMar, 2019-01-01 09:3057,900MXN / 81,900MXN
Álgebra para el aprendizaje automático - Guadalajara - Puerta del HierroJue, 2019-01-10 09:3057,900MXN / 83,100MXN
Álgebra para el aprendizaje automático - Ciudad de Mexico - Colonia Del ValleMié, 2019-01-16 09:3057,900MXN / 81,900MXN
Álgebra para el aprendizaje automático - Guadalajara - Country Club FinancialJue, 2019-01-17 09:3057,900MXN / 80,300MXN
Cursos de Fin de Semana de Inteligencia Artificial, Capacitación por la Tarde de Inteligencia Artificial, Inteligencia Artificial boot camp, Clases de Inteligencia Artificial, Capacitación de Fin de Semana de Inteligencia Artificial, Cursos por la Tarde de Inteligencia Artificial, Inteligencia Artificial coaching, Instructor de Inteligencia Artificial, Capacitador de Inteligencia Artificial, Inteligencia Artificial con instructor, Cursos de Formación de Inteligencia Artificial, Inteligencia Artificial en sitio, Cursos Privados de Inteligencia Artificial, Clases Particulares de Inteligencia Artificial, Capacitación empresarial de Inteligencia Artificial, Talleres para empresas de Inteligencia Artificial, Cursos en linea de Inteligencia Artificial, Programas de capacitación de Inteligencia Artificial, Clases de Inteligencia Artificial

Promociones

CursoUbicaciónFechaPrecio del Curso [A distancia / Presencial]
R para Análisis de Datos e InvestigaciónGuadalajara - Country Club FinancialMié, 2018-12-19 09:3026,550MXN / 47,750MXN
Matlab para Análisis PrescriptivosGuadalajara - Country Club FinancialLun, 2019-01-21 09:3052,110MXN / 74,510MXN
Introducción a la visualización de datos con Tidyverse y RCiudad de Mexico - Colonia Del ValleJue, 2019-03-14 09:3026,550MXN / 48,550MXN
R para Análisis de Datos e InvestigaciónPuebla - Triangulo Las AnimasMar, 2019-05-07 09:3026,550MXN / 46,700MXN
Visual Analytics - Ciencia de datosGuadalajara - Country Club FinancialLun, 2019-05-13 09:3052,110MXN / 74,510MXN

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
En cualquier momento puede cambiar sus preferencias o cancelar su suscripción por completo.

Algunos de nuestros clientes

is growing fast!

We are looking to expand our presence in Argentina!

As a Business Development Manager you will:

  • expand business in Argentina
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!