Curso de Procesamiento de Lenguaje Natural (NLP) con R
Se estima que los datos no estructurados representan más del 90 por ciento de todos los datos, gran parte de ellos en forma de texto. Las publicaciones de blog, los tweets, las redes sociales y otras publicaciones digitales se suman continuamente a este creciente cuerpo de datos.
Este curso en vivo dirigido por un instructor se centra en extraer información y significado de estos datos. Utilizando las bibliotecas R Language y Natural Language Processing (NLP), combinamos conceptos y técnicas de ciencias de la computación, inteligencia artificial y lingüística computacional para comprender algorítmicamente el significado detrás de los datos de texto. Las muestras de datos están disponibles en varios idiomas según los requisitos del cliente.
Al final de esta formación, los participantes serán capaces de preparar conjuntos de datos (grandes y pequeños) a partir de fuentes dispares, y luego aplicar los algoritmos adecuados para analizar e informar sobre su importancia.
Formato del curso
- En parte conferencia, en parte discusión, práctica práctica intensa, pruebas ocasionales para medir la comprensión
Programa del Curso
Introducción
- PNL y R vs Python
Instalación y configuración de R Studio
Instalación de paquetes de R relacionados con Natural Language Processing (NLP)
Una descripción general de las capacidades de manipulación de texto de R
Introducción a un proyecto de PNL en R
Lectura e importación de archivos de datos en R
Manipulación de texto con R
Agrupación de documentos en R
Etiquetado de partes de la oración en R
Análisis sintáctico de oraciones en R
Trabajar con iones Expressregulares en R
Reconocimiento de entidades con nombre en R
Modelado de temas en R
Clasificación de textos en R
Trabajar con conjuntos de datos muy grandes
Visualiza tus resultados
Optimización
Integración de R con otros Languages (Java, Python, etc.)
Resumen y conclusión
Requerimientos
- Cierta familiaridad con la programación.
Audiencia
- Lingüistas y programadores
Los cursos de formación abiertos requieren más de 5 participantes.
Curso de Procesamiento de Lenguaje Natural (NLP) con R - Booking
Curso de Procesamiento de Lenguaje Natural (NLP) con R - Enquiry
Procesamiento de Lenguaje Natural (NLP) con R - Consulta de consultoría
Consulta de consultoría
Testimonios (1)
El ritmo fue justo y el ambiente relajado hizo que los candidatos se sintieran cómodos para hacer preguntas.
Rhian Hughes - Public Health Wales NHS Trust
Curso - Introduction to Data Visualization with Tidyverse and R
Traducción Automática
Próximos cursos
Cursos Relacionados
Avanzado de LangGraph: Optimización, Depuración y Monitoreo de Grafos Complejos
35 HorasLangGraph es un marco para construir aplicaciones LLM multiactor con estado, como gráficos componibles con estado persistente y control de ejecución.
Esta formación en vivo dirigida por instructores (en línea o presencial) está destinada a ingenieros avanzados de plataformas AI, DevOps para AI y arquitectos ML que desean optimizar, depurar, monitorear y operar sistemas LangGraph de grado de producción.
Al finalizar esta formación, los participantes serán capaces de:
- Diseñar y optimizar topologías complejas de LangGraph para velocidad, costo y escalabilidad.
- Diseñar confiabilidad con reintentos, tiempos de espera, idempotencia y recuperación basada en puntos de control.
- Depurar y rastrear ejecuciones del gráfico, inspeccionar el estado y reproducir sistemáticamente problemas de producción.
- Instrumentar gráficos con registros, métricas y trazas, implementar en producción y monitorear SLAs y costos.
Formato del Curso
- Sesión interactiva de lectura y discusión.
- Numerosos ejercicios y prácticas.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor póngase en contacto con nosotros para concertar la fecha.
Advanced Ollama Model Debugging & Evaluation
35 HorasAdvanced Ollama Model Debugging & Evaluation is an in-depth course focused on diagnosing, testing, and measuring model behavior when running local or private Ollama deployments.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI engineers, ML Ops professionals, and QA practitioners who wish to ensure reliability, fidelity, and operational readiness of Ollama-based models in production.
By the end of this training, participants will be able to:
- Perform systematic debugging of Ollama-hosted models and reproduce failure modes reliably.
- Design and execute robust evaluation pipelines with quantitative and qualitative metrics.
- Implement observability (logs, traces, metrics) to monitor model health and drift.
- Automate testing, validation, and regression checks integrated into CI/CD pipelines.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs and debugging exercises using Ollama deployments.
- Case studies, group troubleshooting sessions, and automation workshops.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Creando Flujos de Trabajo de IA Privada con Ollama
14 HorasEsta formación en vivo y presidida por un instructor (en línea o en el sitio) está dirigida a profesionales avanzados que desean implementar flujos de trabajo impulsados por IA seguros y eficientes utilizando Ollama.
Al finalizar esta formación, los participantes podrán:
- Implementar y configurar Ollama para el procesamiento de IA privada.
- Integrar modelos de IA en flujos de trabajo empresariales seguros.
- Optimizar el rendimiento de la IA mientras se mantiene la privacidad de los datos.
- Automatizar procesos de negocio con capacidades de IA alojadas localmente.
- Asegurar el cumplimiento con las políticas de seguridad y gobernanza empresariales.
Claude AI para la Automatización de Flujos de Trabajo y Productividad
14 HorasEste curso de formación en vivo dirigido por un instructor en México (en línea o en el lugar) está dirigido a profesionales de nivel principiante que desean integrar Claude AI en sus flujos de trabajo diarios para mejorar la eficiencia y la automatización.
Al final de esta capacitación, los participantes podrán:
- Utilizar Claude AI para automatizar tareas repetitivas y optimizar flujos de trabajo.
- Mejorar la productividad personal y del equipo mediante la automatización impulsada por IA.
- Integrar Claude AI con las herramientas y plataformas comerciales existentes.
- Optimizar la toma de decisiones impulsada por IA y la gestión de tareas.
Implementación y Optimización de Modelos de Lenguaje Grande (LLMs) con Ollama
14 HorasEste entrenamiento dirigido por un instructor, en vivo en México (en línea o presencial), está dirigido a profesionales de nivel intermedio que deseen implementar, optimizar e integrar LLMs utilizando Ollama.
Al finalizar este entrenamiento, los participantes podrán:
- Configurar e implementar LLMs utilizando Ollama.
- Optimizar modelos de IA para mejorar el rendimiento y la eficiencia.
- Aprovechar la aceleración de GPU para mejorar la velocidad de inferencia.
- Integrar Ollama en flujos de trabajo y aplicaciones.
- Monitorear y mantener el rendimiento de los modelos de IA a lo largo del tiempo.
Fine-Tuning y Personalización de Modelos de IA en Ollama
14 HorasEste entrenamiento en vivo dirigido por un instructor (en línea o presencial) en México está destinado a profesionales de nivel avanzado que desean afinar y personalizar modelos AI en Ollama para mejorar el rendimiento y aplicaciones específicas del dominio.
Al finalizar este entrenamiento, los participantes podrán:
- Configurar un entorno eficiente para afinar modelos AI en Ollama.
- Preparar conjuntos de datos para el ajuste supervisado y el aprendizaje por refuerzo.
- Optimizar los modelos AI para rendimiento, precisión y eficiencia.
- Implementar modelos personalizados en entornos de producción.
- Evaluar mejoras del modelo y asegurar la robustez.
Introducción a Claude AI: IA conversacional y aplicaciones empresariales
14 HorasEste entrenamiento en vivo dirigido por un instructor en México (en línea o en el sitio) está dirigido a profesionales de negocios principiantes, equipos de soporte al cliente y entusiastas de la tecnología que desean comprender los fundamentos de Claude AI y aprovecharlo para aplicaciones comerciales.
Al final de esta capacitación, los participantes podrán:
- Entender las capacidades y casos de uso de Claude AI.
- Configurar e interactuar con Claude AI de manera efectiva.
- Automatizar flujos de trabajo comerciales con IA conversacional.
- Mejorar el engagement y el soporte al cliente utilizando soluciones impulsadas por IA.
LangGraph Applications in Finance
35 HorasLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based finance solutions with proper governance, observability, and compliance.
By the end of this training, participants will be able to:
- Design finance-specific LangGraph workflows aligned to regulatory and audit requirements.
- Integrate financial data standards and ontologies into graph state and tooling.
- Implement reliability, safety, and human-in-the-loop controls for critical processes.
- Deploy, monitor, and optimize LangGraph systems for performance, cost, and SLAs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Fundamentos de LangGraph: Generación y Enlazado Basados en Grafos de LLM
14 HorasLangGraph es un marco para construir aplicaciones LLM estructuradas en grafos que admiten planificación, ramificación, uso de herramientas, memoria y ejecución controlada.
Esta formación en vivo dirigida por instructores (en línea o presencial) está destinada a desarrolladores principiantes, ingenieros de prompts y profesionales de datos que desean diseñar y construir flujos de trabajo LLM multi-etapas confiables utilizando LangGraph.
Al finalizar esta formación, los participantes podrán:
- Explicar conceptos básicos de LangGraph (nodos, bordes, estado) y cuándo utilizarlos.
- Construir cadenas de prompts que se ramifiquen, invoquen herramientas y mantengan la memoria.
- Integrar recuperaciones y APIs externas en los flujos de trabajo gráficos.
- Probar, depurar y evaluar aplicaciones LangGraph para confiabilidad y seguridad.
Formato del Curso
- Charla interactiva y discusión facilitada.
- Laboratorios guiados y revisión de código en un entorno de sandbox.
- Ejercicios basados en escenarios sobre diseño, prueba y evaluación.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para acordarlo.
LangGraph in Healthcare: Workflow Orchestration for Regulated Environments
35 HorasLangGraph enables stateful, multi-actor workflows powered by LLMs with precise control over execution paths and state persistence. In healthcare, these capabilities are crucial for compliance, interoperability, and building decision-support systems that align with medical workflows.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and manage LangGraph-based healthcare solutions while addressing regulatory, ethical, and operational challenges.
By the end of this training, participants will be able to:
- Design healthcare-specific LangGraph workflows with compliance and auditability in mind.
- Integrate LangGraph applications with medical ontologies and standards (FHIR, SNOMED CT, ICD).
- Apply best practices for reliability, traceability, and explainability in sensitive environments.
- Deploy, monitor, and validate LangGraph applications in healthcare production settings.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with real-world case studies.
- Implementation practice in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Legal Applications
35 HorasLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and precise control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based legal solutions with the necessary compliance, traceability, and governance controls.
By the end of this training, participants will be able to:
- Design legal-specific LangGraph workflows that preserve auditability and compliance.
- Integrate legal ontologies and document standards into graph state and processing.
- Implement guardrails, human-in-the-loop approvals, and traceable decision paths.
- Deploy, monitor, and maintain LangGraph services in production with observability and cost controls.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Creación de Flujos de Trabajo Dinámicos con LangGraph y Agentes LLM
14 HorasLangGraph es un marco para componer flujos de trabajo estructurados en gráficos que admiten ramificación, uso de herramientas, memoria y ejecución controlada.
Este entrenamiento en vivo guiado por instructores (en línea o presencial) está destinado a ingenieros de nivel intermedio y equipos de productos que desean combinar la lógica gráfica de LangGraph con los bucles de agentes LLM para construir aplicaciones dinámicas y conscientes del contexto, como agentes de soporte al cliente, árboles de decisiones y sistemas de recuperación de información.
Al finalizar este entrenamiento, los participantes podrán:
- Diseñar flujos de trabajo basados en gráficos que coordinen agentes LLM, herramientas y memoria.
- Implementar enrutamiento condicional, reintentos y respaldos para una ejecución robusta.
- Integrar la recuperación, APIs y salidas estructuradas en los bucles de agentes.
- Evaluar, monitorear y fortalecer el comportamiento del agente para mejorar la confiabilidad y seguridad.
Formato del Curso
- Conferencia interactiva y discusión facilitada.
- Laboratorios guiados y repaso de código en un entorno sandbox.
- Ejercicios de diseño basados en escenarios y revisiones entre pares.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para organizarlo.
LangGraph para Automatización de Marketing
14 HorasLangGraph es un marco de orquestación basado en grafos que permite flujos de trabajo condicionales y multi-pasos para LLM y herramientas, ideal para automatizar y personalizar canales de contenido.
Esta formación en vivo dirigida por instructores (en línea o presencial) se dirige a marketers de nivel intermedio, estrategas de contenidos y desarrolladores de automatización que deseen implementar campañas de correo electrónico dinámicas y ramificadas y canales de generación de contenido utilizando LangGraph.
Al finalizar esta formación, los participantes podrán:
- Diseñar flujos de trabajo de contenido y correo electrónico estructurados en grafos con lógica condicional.
- Integrar LLMs, APIs y fuentes de datos para personalización automatizada.
- Gestionar estado, memoria y contexto a lo largo de campañas multi-paso.
- Evaluar, monitorear y optimizar el rendimiento del flujo de trabajo y los resultados de entrega.
Formato del Curso
- Conferencias interactivas y discusiones grupales.
- Laboratorios prácticos implementando flujos de trabajo de correo electrónico y canales de contenido.
- Ejercicios basados en escenarios sobre personalización, segmentación y lógica ramificada.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para organizarlo.
Introducción a Ollama: Ejecución de Modelos de IA Locales
7 HorasEsta formación en vivo, dirigida por un instructor (en línea u on-site), está orientada a profesionales principiantes que desean instalar, configurar y usar Ollama para ejecutar modelos de IA en sus máquinas locales.
Al finalizar esta formación, los participantes podrán:
- Comprender los fundamentos y capacidades de Ollama.
- Configurar Ollama para ejecutar modelos locales de IA.
- Implementar e interactuar con LLMs utilizando Ollama.
- Optimizar el rendimiento y el uso de recursos para cargas de trabajo de IA.
- Explorar casos de uso para la implementación local de IA en diversos sectores.
Introducción a la visualización de datos con Tidyverse y R
7 HorasPúblico objetivo
Formato del curso
Al final de esta formación, los participantes podrán:
En este entrenamiento interactivo y en vivo, los participantes aprenderán a manipular y visualizar datos utilizando las herramientas incluidas en el Tidyverse.
El Tidyverse es una colección de paquetes versátiles de R para limpiar, procesar, modelar y visualizar datos. Algunos de los paquetes incluidos son: ggplot2, dplyr, tidyr, readr, purrr y tibble.
- Principiantes en el lenguaje R
- Principiantes en el análisis de datos y visualización de datos
- Parte teórica, parte discusión, ejercicios y práctica intensiva
- Realizar análisis de datos y crear visualizaciones atractivas
- Sacar conclusiones útiles de diversos conjuntos de datos de muestra
- Filtrar, ordenar y resumir datos para responder preguntas exploratorias
- Convertir datos procesados en gráficos informativos como líneas, barras, histogramas
- Importar y filtrar datos de diversas fuentes de datos, incluyendo Excel, CSV y archivos SPSS