Curso de Aprendizaje profundo

Curso de Aprendizaje profundo

Los cursos de formación en vivo (DL) de aprendizaje profundo dirigidos por un instructor demuestran a través de la práctica los fundamentos y aplicaciones del aprendizaje profundo y cubren temas como el aprendizaje profundo de máquinas, el aprendizaje estructurado profundo y el aprendizaje jerárquico. El entrenamiento de aprendizaje profundo está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo remoto". El entrenamiento en vivo se puede realizar localmente en las instalaciones del cliente en México o en los centros de entrenamiento corporativos de NobleProg en México. El entrenamiento remoto en vivo se lleva a cabo por medio de un escritorio remoto interactivo. NobleProg--su proveedor de capacitación local

Testimonios

★★★★★
★★★★★

Aprendizaje profundo Subcategorías

Programa del curso Aprendizaje profundo

CódigoNombreDuraciónInformación General
annmldtRedes Neuronales Artificiales, Aprendizaje Automático y Pensamiento Profundo21 horasArtificial Neural Network es un modelo de datos computacionales utilizado en el desarrollo de sistemas de Inteligencia Artificial (IA) capaces de realizar tareas "inteligentes". Las redes neuronales se usan comúnmente en aplicaciones de aprendizaje automático (Machine Learning, ML), que a su vez son una implementación de AI. Aprendizaje profundo es un subconjunto de ML.
undnnComprender las Redes Neuronales Profundas35 horasEste curso comienza con la entrega de conocimientos conceptuales en redes neuronales y, en general, en el algoritmo de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones).

Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.

Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.

Después de completar este curso, los delegados:

- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro

No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.

La duración del curso completo será de alrededor de 70 horas y no de 35 horas.
t2tT2T: Creación de Modelos de Secuencia a Secuencia para el Aprendizaje Generalizado7 horasTensor2Tensor (T2T) es una biblioteca modular y extensible para el entrenamiento de modelos de AI en diferentes tareas, utilizando diferentes tipos de datos de entrenamiento, por ejemplo: reconocimiento de imágenes, traducción, análisis sintáctico, subtítulos de imágenes y reconocimiento de voz. Lo mantiene el equipo de Google Brain.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo preparar un modelo de aprendizaje profundo para resolver tareas múltiples.

Al final de esta capacitación, los participantes podrán:

- Instalar tensor2tensor, seleccionar un conjunto de datos y entrenar y evaluar un modelo de IA
- Personalice un entorno de desarrollo utilizando las herramientas y los componentes incluidos en Tensor2Tensor
- Cree y use un único modelo para aprender de forma simultánea varias tareas de varios dominios
- Utilice el modelo para aprender de tareas con una gran cantidad de datos de entrenamiento y aplicar ese conocimiento a tareas donde los datos son limitados
- Obtenga resultados de procesamiento satisfactorios con una sola GPU

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
embeddingprojectorEmbedding Projector: Visualización de sus Datos de Entrenamiento14 horasEmbedding Projector es una aplicación web de código abierto para visualizar los datos utilizados para entrenar sistemas de aprendizaje automático. Creado por Google, es parte de TensorFlow.

Esta capacitación en vivo dirigida por un instructor presenta los conceptos detrás de Embedding Projector y guía a los participantes a través de la configuración de un proyecto de demostración.

Al final de esta capacitación, los participantes podrán:

- Explore cómo los datos se interpretan mediante modelos de aprendizaje automático
- Navegue a través de vistas 3D y 2D de datos para comprender cómo lo interpreta un algoritmo de aprendizaje automático
- Comprenda los conceptos detrás de Embeddings y su papel en la representación de vectores matemáticos para imágenes, palabras y números.
- Explore las propiedades de una incrustación específica para comprender el comportamiento de un modelo
- Aplicar Embedding Project a casos de uso del mundo real, como crear un sistema de recomendación de canciones para amantes de la música

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
openfaceOpenFace: Creación de Sistemas de Reconocimiento Facial14 horasOpenFace es un software de reconocimiento facial en tiempo real basado en Python y Torch basado en la investigación FaceNet de Google.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear y desplegar una aplicación de reconocimiento facial de muestra.

Al final de esta capacitación, los participantes podrán:

Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC, Torch y nn4 para implementar la detección de rostros, la alineación y la transformación.
Aplique OpenFace a aplicaciones del mundo real tales como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etc.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
pythonadvmlPython para el Aprendizaje Automático Avanzado21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán las técnicas de aprendizaje automático más relevantes y de vanguardia en Python a medida que crean una serie de aplicaciones de demostración que incluyen imágenes, música, texto y datos financieros.

Al final de esta capacitación, los participantes podrán:

- Implementar algoritmos y técnicas de aprendizaje automático para resolver problemas complejos
- Aplicar el aprendizaje profundo y el aprendizaje semi-supervisado a aplicaciones que involucren imagen, música, texto e información financiera
- Empujar los algoritmos de Python a su máximo potencial
- Usa bibliotecas y paquetes como NumPy y Theano

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
radvmlAprendizaje Automático Avanzado con R21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas avanzadas para el aprendizaje automático con R a medida que avanzan en la creación de una aplicación en el mundo real.

Al final de esta capacitación, los participantes podrán:

- Utiliza técnicas como el ajuste de hiperparámetros y el aprendizaje profundo
- Comprender e implementar técnicas de aprendizaje no supervisadas
- Ponga un modelo en producción para usar en una aplicación más grande

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
tensorflowservingCurso de TensorFlow Serving7 horasTensorFlow Serving es un sistema para servir modelos de aprendizaje automático (ML) a la producción.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a configurar y usar TensorFlow Serving para implementar y administrar modelos ML en un entorno de producción.

Al final de esta capacitación, los participantes podrán:

- Entrene, exporte y sirva varios modelos de TensorFlow
- Pruebe e implemente algoritmos utilizando una única arquitectura y un conjunto de API
- Extienda TensorFlow Sirviendo para servir a otros tipos de modelos más allá de los modelos TensorFlow

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
matlabdlMatlab para el Aprendizaje Profundo14 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar Matlab para diseñar, construir y visualizar una red neuronal convolucional para el reconocimiento de imágenes.

Al final de esta capacitación, los participantes podrán:

- Construya un modelo de aprendizaje profundo
- Automatizar el etiquetado de datos
- Trabaja con modelos de Caffe y TensorFlow-Keras
- Entrene datos usando múltiples GPU, la nube o clusters

Audiencia

- Desarrolladores
- Ingenieros
- Expertos de dominio

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
mlbankingpython_Aprendizaje Automático para la Banca (con Python)21 horasEn esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria bancaria. Python se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
dlfornlpAprendizaje profundo para NLP (procesamiento de lenguaje natural)28 horasDeep Learning para NLP permite que una máquina aprenda procesamiento de lenguaje simple a complejo. Entre las tareas actualmente posibles se encuentran la traducción de idiomas y la generación de subtítulos para fotos. DL (Deep Learning) es un subconjunto de ML (Machine Learning). Python es un lenguaje de programación popular que contiene bibliotecas para Deep Learning para NLP.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar las bibliotecas de Python para el procesamiento de lenguaje natural (NLP) mientras crean una aplicación que procesa un conjunto de imágenes y genera leyendas.

Al final de esta capacitación, los participantes podrán:

- Diseño y código DL para NLP utilizando bibliotecas Python
- Crear código de Python que lea una gran colección de imágenes y genere palabras clave
- Crear código Python que genere subtítulos de las palabras clave detectadas

Audiencia

- Programadores con interés en la lingüística
- Programadores que buscan una comprensión de NLP (procesamiento de lenguaje natural)

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
PaddlePaddleCurso de PaddlePaddle21 horasPaddlePaddle (PArallel Distributed Deep LEarning) es una plataforma de aprendizaje profundo escalable desarrollada por Baidu.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar PaddlePaddle para permitir el aprendizaje profundo en sus aplicaciones de productos y servicios.

Al final de esta capacitación, los participantes podrán:

- Configurar y configurar PaddlePaddle
- Configure una red neuronal convolucional (CNN) para el reconocimiento de imágenes y la detección de objetos
- Configurar una Red Neuronal Recurrente (RNN) para el análisis de sentimientos
- Establecer un aprendizaje profundo sobre los sistemas de recomendación para ayudar a los usuarios a encontrar respuestas
- Predecir porcentajes de clics (CTR), clasificar conjuntos de imágenes a gran escala, realizar reconocimiento óptico de caracteres (OCR), buscar rangos, detectar virus informáticos e implementar un sistema de recomendaciones.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
dlfinancewithrAprendizaje Profundo para las Finanzas (con R)28 horasEl aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para finanzas usando R a medida que avanzan en la creación de un modelo de predicción del precio de las acciones de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en finanzas
- Use R para crear modelos de aprendizaje profundo para finanzas
- Construya su propio modelo de predicción del precio de las acciones de aprendizaje profundo utilizando R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
dlforbankingwithpythonAprendizaje Profundo para la Banca (con Python)28 horasEl aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. Python es un lenguaje de programación de alto nivel famoso por su clara sintaxis y legibilidad de código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para la banca usando Python mientras avanzan en la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en la banca
- Utilice Python, Keras y TensorFlow para crear modelos de aprendizaje profundo para la banca
- Construya su propio modelo de riesgo de crédito de aprendizaje profundo usando Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
dlforbankingwithrAprendizaje Profundo para la Banca (con R)28 horasEl aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para la banca usando R a medida que avanzan en la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en la banca
- Use R para crear modelos de aprendizaje profundo para la banca
- Construya su propio modelo de riesgo de crédito de aprendizaje profundo usando R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
dlforfinancewithpythonAprendizaje Profundo para las Finanzas (con Python)28 horasEl aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. Python es un lenguaje de programación de alto nivel famoso por su clara sintaxis y legibilidad de código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para las finanzas usando Python mientras avanzan en la creación de un modelo de predicción del precio de las acciones de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en finanzas
- Utilice Python, Keras y TensorFlow para crear modelos de aprendizaje profundo para finanzas
- Construya su propio modelo de predicción del precio de las acciones de aprendizaje profundo usando Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
drlpythonAprendizaje de refuerzo profundo con Python21 horasEl aprendizaje de refuerzo profundo se refiere a la capacidad de un "agente artificial" para aprender por prueba y error y recompensas y castigos. Un agente artificial tiene como objetivo emular la capacidad de un ser humano de obtener y construir conocimiento por sí mismo, directamente a partir de insumos crudos como la visión. Para lograr un aprendizaje reforzado, se utilizan redes neuronales y de aprendizaje profundo. El aprendizaje de refuerzo es diferente del aprendizaje automático y no depende de enfoques de aprendizaje supervisados ​​y no supervisados.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán los fundamentos de Deep Refforcement Learning a medida que avanzan en la creación de un Deep Learning Agent.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos clave detrás del aprendizaje profundo y el aprendizaje del aprendizaje automático
- Aplicar algoritmos avanzados de refuerzo de aprendizaje para resolver problemas del mundo real
- Crear un agente de aprendizaje profundo

Audiencia

- Desarrolladores
- Científicos de datos

Formato de la carrera

- Parte de lectura, parte de discusión, ejercicios y práctica práctica
DLAITEDMTécnicas de IA de Aprendizaje Profundo para Ejecutivos, Desarrolladores y Gerentes21 horasIntroducción:

El aprendizaje profundo se está convirtiendo en un componente principal del diseño de productos futuros que quiere incorporar inteligencia artificial en el corazón de sus modelos. Dentro de los próximos 5 a 10 años, las herramientas de desarrollo de Aprendizaje Profundo, las bibliotecas y los idiomas se convertirán en componentes estándar de cada conjunto de herramientas de desarrollo de software. Hasta ahora, Google, Sales Force, Facebook, Amazon han utilizado con éxito la IA de aprendizaje profundo para impulsar sus negocios. Las aplicaciones iban desde la traducción automática automática, análisis de imágenes, análisis de video, análisis de movimiento, generación de publicidad dirigida y mucho más.

Este curso está dirigido a aquellas organizaciones que desean incorporar Aprendizaje Profundo como parte muy importante de su estrategia de producto o servicio. A continuación se muestra el esquema del curso de aprendizaje profundo que podemos personalizar para diferentes niveles de empleados / partes interesadas en una organización.

Público objetivo:

(Dependiendo del público objetivo, los materiales del curso serán personalizados)

Ejecutivos

Una descripción general de AI y cómo encaja en la estrategia corporativa, con sesiones de trabajo sobre planificación estratégica, hojas de ruta tecnológicas y asignación de recursos para garantizar el máximo valor.

Gerentes de proyecto

Cómo planificar un proyecto de AI, incluida la recopilación y evaluación de datos, la limpieza y verificación de datos, el desarrollo de un modelo de prueba de concepto, la integración en los procesos comerciales y la entrega en toda la organización.

Desarrolladores

Entrenamientos técnicos detallados, con enfoque en redes neuronales y aprendizaje profundo, análisis de imágenes y video (CNN), análisis de sonido y texto (NLP) y llevar la inteligencia artificial a las aplicaciones existentes.

Vendedores

Una visión general de AI y cómo puede satisfacer las necesidades de los clientes, propuestas de valor para varios productos y servicios, y cómo disipar los temores y promover los beneficios de la IA.
Nue_LBGComputación Neuronal - Ciencia de Datos14 horasEsta sesión de capacitación basada en el aula contendrá presentaciones y ejemplos basados en computadora y ejercicios de estudio de caso para emprender con bibliotecas de redes neurales y profundas relevantes
dlformedicineAprendizaje profundo para la medicina14 horasMachine Learning es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. Deep Learning es un subcampo de Machine Learning que intenta imitar el funcionamiento del cerebro humano al tomar decisiones. Está entrenado con datos para brindar soluciones automáticas a los problemas. Deep Learning ofrece amplias oportunidades para la industria médica, que está instalada en una mina de oro de datos.

En esta capacitación en vivo dirigida por un instructor, los participantes tomarán parte en una serie de discusiones, ejercicios y análisis de estudios de casos para comprender los fundamentos del aprendizaje profundo. Se evaluarán las herramientas y técnicas de aprendizaje profundo más importantes y se llevarán a cabo ejercicios para preparar a los participantes para llevar a cabo su propia evaluación e implementación de soluciones de aprendizaje profundo dentro de sus organizaciones.

Al final de esta capacitación, los participantes podrán:

- Comprender los fundamentos del Aprendizaje Profundo
- Aprende técnicas de aprendizaje profundo y sus aplicaciones en la industria
- Examine problemas en medicina que pueden ser resueltos por las tecnologías Deep Learning
- Explore casos de estudio de Deep Learning en medicina
- Formule una estrategia para adoptar las últimas tecnologías en Deep Learning para resolver problemas en medicina

Audiencia

- Gerentes
- Profesionales médicos en roles de liderazgo

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Nota

- Para solicitar una capacitación personalizada para este curso, contáctenos para hacer arreglos.
dlfortelecomwithpythonDeep Learning for Telecom (with Python)28 horasMachine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for telecom using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in telecom
- Use Python, Keras, and TensorFlow to create deep learning models for telecom
- Build their own deep learning customer churn prediction model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
dsstneAmazon DSSTNE: Construya un Sistema de Recomendación7 horasAmazon DSSTNE es una biblioteca de código abierto para el entrenamiento y la implementación de modelos de recomendación. Permite modelos con matrices de peso que son demasiado grandes para que una sola GPU se entrene en un solo host.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar DSSTNE para crear una aplicación de recomendación.

Al final de esta capacitación, los participantes podrán:

- Entrene un modelo de recomendación con conjuntos de datos dispersos como entrada
- Escala de entrenamiento y modelos de predicción en múltiples GPU
- Extienda el cómputo y el almacenamiento de forma paralela a los modelos
- Genere recomendaciones de productos personalizados similares a Amazon.
- Implemente una aplicación lista para producción que pueda escalar a cargas de trabajo pesadas

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
MicrosoftCognitiveToolkitCurso de Microsoft Cognitive Toolkit 2.x21 horasMicrosoft Cognitive Toolkit 2.x (anteriormente CNTK) es un juego de herramientas de código abierto de grado comercial que entrena algoritmos de aprendizaje profundo para aprender como el cerebro humano. Según Microsoft, CNTK puede ser 5-10 veces más rápido que TensorFlow en redes recurrentes, y de 2 a 3 veces más rápido que TensorFlow para tareas relacionadas con imágenes.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar Microsoft Cognitive Toolkit para crear, entrenar y evaluar algoritmos de aprendizaje profundo para su uso en aplicaciones de AI comerciales que involucren múltiples tipos de datos tales como datos, voz, texto e imágenes.

Al final de esta capacitación, los participantes podrán:

- Acceda a CNTK como una biblioteca desde un programa de Python, C # o C ++
- Use CNTK como una herramienta independiente de aprendizaje automático a través de su propio lenguaje de descripción de modelo (BrainScript)
- Utilice la funcionalidad de evaluación del modelo CNTK de un programa Java
- Combinar DNN de feed-forward, redes convolucionales (CNN) y redes recurrentes (RNNs / LSTM)
- Escala de capacidad de cálculo en CPU, GPU y múltiples máquinas
- Acceda a conjuntos de datos masivos utilizando los lenguajes de programación y algoritmos existentes

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Nota

- Si desea personalizar cualquier parte de esta capacitación, incluido el lenguaje de programación que prefiera, contáctenos para organizarlo.
deeplearning1Introducción al Aprendizaje Profundo21 horasEste curso es una visión general de Deep Learning sin profundizar en ningún método específico. Es adecuado para las personas que quieren empezar a usar el aprendizaje profundo para mejorar su precisión de la predicción.
dl4jirDeepLearning4J para el Reconocimiento de Imágenes21 horasDeeplearning4j es un software Open-Source Deep-Learning para Java y Scala en Hadoop y Spark.

Audiencia

Este curso está dirigido a ingenieros y desarrolladores que buscan utilizar DeepLearning4J en sus proyectos de reconocimiento de imágenes.
bspkannmldtRedes Neuronales Artificiales, Pensamiento Profundo y Aprendizaje Automático 21 horasArtificial Neural Network es un modelo de datos computacionales utilizado en el desarrollo de sistemas de Inteligencia Artificial (IA) capaces de realizar tareas "inteligentes". Las redes neuronales se usan comúnmente en aplicaciones de aprendizaje automático (Machine Learning, ML), que a su vez son una implementación de AI. Aprendizaje profundo es un subconjunto de ML.
dladvAprendizaje Profundo (Deep Learning) Avanzado28 horasEl aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales .
tf101Aprendizaje Profundo con TensorFlow21 horasTensorFlow es una API de segunda generación de la biblioteca de software de código abierto de Google para Deep Learning. El sistema está diseñado para facilitar la investigación en aprendizaje de máquina, y para hacer rápida y fácil la transición del prototipo de investigación al sistema de producción.

Audiencia

Este curso está dirigido a ingenieros que buscan usar TensorFlow para sus proyectos de Aprendizaje Profundo

Después de completar este curso, los delegados:

- entender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar producción avanzada como los modelos de entrenamiento, la construcción de gráficos y registro
tfirTensorFlow para Reconocimiento de Imágenes28 horasEste curso explora, con ejemplos específicos, la aplicación de Flujo Tensor a los propósitos de reconocimiento de imagen

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para los propósitos de reconocimiento de imágenes

Después de completar este curso, los delegados podrán:

- entender la estructura y los mecanismos de despliegue de TensorFlow
- llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- evaluar la calidad del código, realizar depuración, monitoreo
- implementar la producción avanzada como modelos de formación, creación de gráficos y registro
tsflw2vProcesamiento del Lenguaje Natural con TensorFlow35 horasTensorFlow ™ es una biblioteca de software de código abierto para computación numérica utilizando gráficos de flujo de datos.

SyntaxNet es una estructura de procesamiento de lenguaje natural de la red neuronal para TensorFlow.

Word2Vec se utiliza para el aprendizaje de representaciones vectoriales de palabras, llamadas "embeddings palabra". Word2vec es un modelo predictivo particularmente computacionalmente eficiente para aprender las incorporaciones de palabras a partir de texto en bruto. Viene en dos sabores, el modelo continuo de la bolsa-de-palabras (CBOW) y el modelo de Skip-Gram (capítulo 3.1 y 3.2 en Mikolov y otros).

Utilizado en tándem, SyntaxNet y Word2Vec permite a los usuarios generar modelos de incorporación aprendida de entrada de lenguaje natural.

Audiencia

Este curso está dirigido a desarrolladores e ingenieros que tienen la intención de trabajar con los modelos SyntaxNet y Word2Vec en sus gráficos TensorFlow.

Después de completar este curso, los delegados:

Entender la estructura y los mecanismos de despliegue de TensorFlow

- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro

Próximos Cursos Aprendizaje profundo

CursoFechaPrecio del Curso [A distancia / Presencial]
Applied AI from Scratch - Ciudad de Mexico - Colonia Del ValleLun, 2018-12-31 09:30112,500MXN / 140,500MXN
Applied AI from Scratch - Ciudad de Mexico - Mariano EscobedoMar, 2019-02-26 09:30112,500MXN / 140,500MXN
Applied AI from Scratch - Ciudad de Mexico - Colonia Del ValleLun, 2019-04-08 09:30112,500MXN / 140,500MXN
Applied AI from Scratch - Guadalajara - Country Club FinancialMar, 2019-04-16 09:30112,500MXN / 137,300MXN
Applied AI from Scratch - Ciudad de Mexico - Mariano EscobedoMar, 2019-05-28 09:30112,500MXN / 140,500MXN
Cursos de Fin de Semana de Aprendizaje profundo, Capacitación por la Tarde de Aprendizaje profundo, Aprendizaje profundo boot camp, Clases de Aprendizaje profundo, Capacitación de Fin de Semana de Aprendizaje profundo, Cursos por la Tarde de Aprendizaje profundo, Aprendizaje profundo coaching, Instructor de Aprendizaje profundo, Capacitador de Aprendizaje profundo, Aprendizaje profundo con instructor, Cursos de Formación de Aprendizaje profundo, Aprendizaje profundo en sitio, Cursos Privados de Aprendizaje profundo, Clases Particulares de Aprendizaje profundo, Capacitación empresarial de Aprendizaje profundo, Talleres para empresas de Aprendizaje profundo, Cursos en linea de Aprendizaje profundo, Programas de capacitación de Aprendizaje profundo, Clases de Aprendizaje profundo

Promociones

CursoUbicaciónFechaPrecio del Curso [A distancia / Presencial]
Algoritmos GenéticosQuerétaro - Milenio IIIMar, 2019-01-01 09:30119,700MXN / 144,500MXN
Fundamentos de Redes Neuronales Usando TensorFlow como EjemploGuadalajara - Country Club FinancialMar, 2019-01-08 09:30119,700MXN / 144,500MXN
Estadísticas Avanzadas Utilizando el Software de Análisis Predictivo de SPSSMonterrey - DatafluxMar, 2019-01-15 09:30101,250MXN / 126,050MXN
Conceptos Básicos de la BioinformáticaQuerétaro - Milenio IIIMié, 2019-02-06 09:3076,500MXN / 100,100MXN
OMG Certified Real-time and Embedded Specialist (OCRES) - Intermediate Exam PreparationMonterrey - DatafluxLun, 2019-03-04 09:30101,250MXN / 126,050MXN

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
En cualquier momento puede cambiar sus preferencias o cancelar su suscripción por completo.

Algunos de nuestros clientes

is growing fast!

We are looking to expand our presence in Uruguay!

As a Business Development Manager you will:

  • expand business in Uruguay
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!